Header Ads Widget

Responsive Advertisement

Setting up Custom Filters using Debouncing, Throttling, Rate Limiting, and Exponential Backoff

 In a microservices architecture, implementing custom filters for Debouncing, Throttling, Rate Limiting, and Exponential Backoff helps in managing traffic efficiently and improving the overall performance of your services. These filters are usually applied at the API gateway or individual microservice level.

Setting up Custom Filters using Debouncing, Throttling, Rate Limiting, and Exponential Backoff

You can create custom filters in a Spring Boot microservice and configure them using the application.yml file. These filters will be applied globally or to specific endpoints to control traffic and manage retries.


1. Debouncing Filter

Debouncing helps to ensure that multiple quick successive requests are handled with a delay to avoid overwhelming the service. It is typically a client-side technique, but server-side, you can debounce request handling using filters to prevent too frequent handling of the same type of request.

YAML Setup for Debouncing:

This is uncommon in microservices but can be implemented using a filter with a configurable delay between similar request types.

You could implement a custom filter that delays requests and configure it in application.yml.

 

YAML Configuration:

yaml

debounce:

  enabled: true

  delay: 500 # Delay in milliseconds before handling the next similar request

 

Debouncing Filter in Java:

java

@Component

public class DebounceFilter extends OncePerRequestFilter {

 

    @Value("${debounce.delay}")

    private long debounceDelay;

 

    private final Map<String, Long> requestTimestamps = new ConcurrentHashMap<>();

 

    @Override

    protected void doFilterInternal(HttpServletRequest request, HttpServletResponse response, FilterChain filterChain)

            throws ServletException, IOException {

        String key = request.getRemoteAddr() + request.getRequestURI();

        long currentTime = System.currentTimeMillis();

 

        if (requestTimestamps.containsKey(key)) {

            long lastRequestTime = requestTimestamps.get(key);

            if (currentTime - lastRequestTime < debounceDelay) {

                response.setStatus(HttpStatus.TOO_MANY_REQUESTS.value());

                return;

            }

        }

        requestTimestamps.put(key, currentTime);

        filterChain.doFilter(request, response);

    }

}

 


2. Throttling Filter

Throttling limits the number of requests handled by the server in a fixed time interval.It controls the frequency of request handling, ensuring that the server handles only a certain number of requests in a fixed time window.

YAML Setup for Throttling:

You can configure throttling by setting a fixed request limit in a specific time window.

yaml

throttle:

  enabled: true

  max-requests: 10 # max number of requests

  time-window: 60s # time window (60 seconds)

 

Throttling Filter in Java:

java

@Component

public class ThrottleFilter extends OncePerRequestFilter {

 

    @Value("${throttle.max-requests}")

    private int maxRequests;

 

    @Value("${throttle.time-window}")

    private long timeWindow; // in milliseconds

 

    private final Map<String, List<Long>> requestTimestamps = new ConcurrentHashMap<>();

 

    @Override

    protected void doFilterInternal(HttpServletRequest request, HttpServletResponse response, FilterChain filterChain)

            throws ServletException, IOException {

        String clientIP = request.getRemoteAddr();

        long currentTime = System.currentTimeMillis();

 

        List<Long> timestamps = requestTimestamps.getOrDefault(clientIP, new ArrayList<>());

        timestamps.removeIf(timestamp -> currentTime - timestamp > timeWindow);

 

        if (timestamps.size() >= maxRequests) {

            response.setStatus(HttpStatus.TOO_MANY_REQUESTS.value());

            return;

        }

 

        timestamps.add(currentTime);

        requestTimestamps.put(clientIP, timestamps);

        filterChain.doFilter(request, response);

    }

}

 


3. Rate Limiting Filter

Rate Limiting restricts the number of API requests that a user or client can send over a specific time window. It allows you to restrict the number of requests a client can send within a certain period. It’s often used to prevent abuse of the API by malicious users.

YAML Setup for Rate Limiting:

You can configure rate limiting in application.yml by defining the maximum number of requests a user can send in a time frame.

yaml

rate-limiting:

  enabled: true

  max-requests: 100  # Number of requests allowed

  time-window: 60s   # Time period (e.g., 60 seconds)

 

Rate Limiting Filter in Java:

java

@Component

public class RateLimitingFilter extends OncePerRequestFilter {

 

    @Value("${rate-limiting.max-requests}")

    private int maxRequests;

 

    @Value("${rate-limiting.time-window}")

    private long timeWindow; // in milliseconds

 

    private final Map<String, List<Long>> clientRequests = new ConcurrentHashMap<>();

 

    @Override

    protected void doFilterInternal(HttpServletRequest request, HttpServletResponse response, FilterChain filterChain)

            throws ServletException, IOException {

        String clientKey = request.getRemoteAddr();

        long currentTime = System.currentTimeMillis();

 

        List<Long> timestamps = clientRequests.getOrDefault(clientKey, new ArrayList<>());

        timestamps.removeIf(timestamp -> currentTime - timestamp > timeWindow);

 

        if (timestamps.size() >= maxRequests) {

            response.setStatus(HttpStatus.TOO_MANY_REQUESTS.value());

            return;

        }

 

        timestamps.add(currentTime);

        clientRequests.put(clientKey, timestamps);

        filterChain.doFilter(request, response);

    }

}

 


4. Exponential Backoff Filter

Exponential Backoff allows for handling retries by increasing the delay between retry attempts exponentially. This technique is often used when a service temporarily fails or is overloaded.

It is a technique used to retry failed requests, but the retry intervals increase exponentially. This is often used in microservices to avoid overwhelming the service or server when failures occur.

YAML Setup for Exponential Backoff:

You can configure the initial delay, maximum delay, and the backoff multiplier in application.yml

yaml

exponential-backoff:

  enabled: true

  initial-delay: 1s  # Start with 1 second delay

  max-delay: 64s     # Maximum retry delay

  backoff-multiplier: 2  # Double the delay after each failure

 

Exponential Backoff Filter in Java:

java

public class ExponentialBackoffRetryHandler {

 

    private final long initialDelay;

    private final long maxDelay;

    private final int backoffMultiplier;

 

    public ExponentialBackoffRetryHandler(long initialDelay, long maxDelay, int backoffMultiplier) {

        this.initialDelay = initialDelay;

        this.maxDelay = maxDelay;

        this.backoffMultiplier = backoffMultiplier;

    }

 

    public void executeWithBackoff(Runnable task) throws InterruptedException {

        long delay = initialDelay;

        while (true) {

            try {

                task.run();

                return;

            } catch (Exception e) {

                if (delay > maxDelay) {

                    throw new RuntimeException("Exceeded max retry attempts");

                }

                System.out.println("Retrying in " + delay + "ms...");

                Thread.sleep(delay);

                delay *= backoffMultiplier;

            }

        }

    }

}

 

Usage Example:

java

public class BackoffRetryExample {

 

    public static void main(String[] args) throws InterruptedException {

        ExponentialBackoffRetryHandler backoff = new ExponentialBackoffRetryHandler(1000, 64000, 2);

 

        backoff.executeWithBackoff(() -> {

            // Your task to retry

            if (Math.random() > 0.3) {

                throw new RuntimeException("Simulated failure");

            }

            System.out.println("Task succeeded");

        });

    }

}

 


Setting Up Filters in Spring Boot with YAML Configuration

  1. Define filters as beans or components in your Spring Boot application.
  2. Use application.yml to configure the filters dynamically.
  3. Activate or deactivate filters based on the configuration settings in application.yml.

Example YAML Configuration:

yaml

filters:

  debounce:

    enabled: true

    delay: 500

  throttle:

    enabled: true

    max-requests: 10

    time-window: 60s

  rate-limiting:

    enabled: true

    max-requests: 100

    time-window: 60s

  exponential-backoff:

    enabled: true

    initial-delay: 1s

    max-delay: 64s

    backoff-multiplier: 2

 


Conclusion

By implementing custom filters for Debouncing, Throttling, Rate Limiting, and Exponential Backoff in a Spring Boot microservices application, you can manage incoming traffic effectively and prevent your services from being overwhelmed. Using YAML configurations allows you to dynamically adjust the filter settings without modifying the source code. This is particularly useful in production environments where flexibility is essential for maintaining service stability and performance.

For more information, visit

Ø  Microservices: Custom Filters for Debouncing, Throttling, Rate Limits & Backoff

Ø  Mastering Debouncing, Throttling, Rate Limiting, and Exponential Backoff.

Ø  Custom Filters in Microservices

Ø  Spring Cloud Gateway uses a RewritePath filter




Flowchart of Debouncing, Throttling, Rate Limiting, and Exponential Backoff
Flowchart of Debouncing, Throttling, Rate Limiting, and Exponential Backoff

For More Related information, visit

Ø  Mastering Debounce, Throttle, Rate Limit & Backoff in Java

Ø  Deep understand of ThrottlingFilter with RewritePath filter in cloud gateway

Ø  Custom gateway filters in Spring Cloud Gateway

Ø  Custom Filters in Microservices

Ø  Mastering Debounce, Throttle, Rate Limit & Backoff in Java

Ø  Microservices: Custom Filters for Debouncing, Throttling, Rate Limits & Backoff

Ø  Spring Cloud Gateway uses a RewritePath filter

 

For More DSA Related information, visit

Ø  Bench mark of compiler using Ackerman function

Ø  Find the Missing Number

Ø  To check if the rows of a matrix are circularly identical in Java

Ø  how to check loop in array

Ø  100 door puzzle programs

Ø  Frequency Weaving Logic & Spiral Printing of a Rectangle

Ø  Zig Zag Matrix print multiple way

Ø  Gready Algorithm’s or knapsack algorithms

Ø  understanding recursive method for binary tree

Ø  Dynamic Programming: Max Square Sub-matrix of 1s in a Matrix

Ø  Previous and Next Date Palindrome

Ø  Karatsuba's Algorithm for multiplying two large numbers

Ø  Multiplication In different Way

Ø  Division by Different way

Ø  Time Analysis for Congested Routes Using Shortest Path Algorithms

Ø  Sorting of country

Ø  Sorting Of a list multiple attribute wise two technique

Ø  Seat Arrangement in Sorting Order Like 1A-1E, 3C-3G etc

 

For More Java Related information, visit

Ø  Streams Lambdas Collectors and Functional Interfaces in Java 8

Ø  Java 8 support static method or default method or both in the interface

Ø  Inheritance Understand

Ø  Serialization understanding

Ø  Clone Under standing

Ø  Exception understanding

Ø  Garbage Collection Under Standing

Ø  How work Garbage Collection in Java

Ø  Under Standing Of Mutable and Immutable Class

Ø  enum understand

 

For Other information, visit

Ø  How to get the neighbor of binary tree

Ø  OWASP (Open Web Application Security Project)

Ø  Mastering Debounce, Throttle, Rate Limit & Backoff in Java

Ø  How to draw sequence diagram and other diagrams using plantuml

Ø  Pascal Triangle

Ø  Molecular weight of chemistry in Java code

Ø  String to xml or html Beautifier

Ø  Key Components of Apache Kafka for Scalable Messaging

Ø  Build a Video Stream Microservice with Kafka & REST API in Java

Ø  Kafka general questions and answers

Ø  How to convert XML to Object and Object to XML

Ø  To securely obtain employee information utilizing TLS 1.3 or TLS 1.2

Ø  TLS 1.3 Configuration

Ø  Convert Floating-Point Values from SQL Server to Oracle in Java

Ø  Design pattern

Ø  Mastering Design Patterns Practical Implementation Tips

Ø   

Post a Comment

0 Comments