To build a video stream processing microservice with a REST
API in Java, using Kafka and Zookeeper, we can design an architecture where the
REST API serves as an entry point to manage video streams. This microservice
will:
- Capture
video frames and send them to Kafka.
- Process
video frames through Kafka topics.
- Provide
an API for starting and stopping streams, monitoring, and retrieving
processed frames.
We’ll use Spring Boot for the REST API, Apache
Kafka for message management, and OpenCV for video processing.
Here’s a step-by-step guide.
Architecture Overview
- REST
API (Spring Boot) - A controller that handles API requests for
starting/stopping video streams.
- Kafka
Cluster with Zookeeper - Manages video stream topics.
- Video
Producer - Captures video frames and sends them to Kafka.
- Video
Processor - Consumes, processes frames, and sends results to an output
topic.
- Consumer
- Retrieves and displays or stores processed frames.
Here’s a simple example to demonstrate how Apache Kafka,
Zookeeper, and Kafka Streams work together. This example will cover setting up
Kafka with Zookeeper, creating a Kafka topic, and using Kafka Streams to
process data in that topic.
Prerequisites
- Apache
Kafka and Zookeeper installed.
- Java
(preferably Java 8+).
- A Kafka
client library, such as kafka-clients and kafka-streams in your Java
project.
Steps to Set Up and Run
Step 1: Start Zookeeper and Kafka
Start Zookeeper, then Kafka, as Kafka depends on Zookeeper.
bash
# Start
Zookeeper zookeeper-server-start.sh
config/zookeeper.properties # Start Kafka kafka-server-start.sh
config/server.properties |
Step 2: Create Kafka Topics
Create topics for raw video frames and processed frames.
bash
kafka-topics.sh
--create --topic raw-video-frames --bootstrap-server localhost:9092
--partitions 3 --replication-factor 1 kafka-topics.sh
--create --topic processed-video-frames --bootstrap-server localhost:9092
--partitions 3 --replication-factor 1 |
Step 3: Set Up a Spring Boot Project
Dependencies (Maven pom.xml)
Include Kafka, Spring Boot, OpenCV, and other necessary
dependencies:
xml
<dependencies> <!-- Spring Boot and Web --> <dependency>
<groupId>org.springframework.boot</groupId>
<artifactId>spring-boot-starter-web</artifactId> </dependency> <!-- Kafka Dependencies --> <dependency>
<groupId>org.springframework.kafka</groupId>
<artifactId>spring-kafka</artifactId> </dependency> <dependency>
<groupId>org.apache.kafka</groupId> <artifactId>kafka-clients</artifactId> <version>3.0.0</version> </dependency> <!-- OpenCV --> <dependency>
<groupId>org.bytedeco</groupId>
<artifactId>opencv</artifactId>
<version>4.5.3-1.5.7</version> </dependency> </dependencies> |
Step 4: Define Video Capture, Processing, and Producer
Services
- VideoProducerService:
Captures video frames and sends them to Kafka.
- VideoProcessorService:
Consumes frames from raw-video-frames, applies processing (e.g., grayscale
conversion), and publishes to processed-video-frames.
- VideoController:
Spring REST controller for managing the video stream.
Example Code
VideoProducerService
This service captures frames from a video source and sends
them to the Kafka topic raw-video-frames.
java
import
org.apache.kafka.clients.producer.KafkaProducer; import
org.apache.kafka.clients.producer.ProducerRecord; import
org.opencv.core.Core; import
org.opencv.core.Mat; import
org.opencv.videoio.VideoCapture; import
org.springframework.stereotype.Service; import
javax.annotation.PostConstruct; import
java.util.Properties; @Service public class
VideoProducerService { static {
System.loadLibrary(Core.NATIVE_LIBRARY_NAME); } private KafkaProducer<String,
byte[]> producer; private VideoCapture videoCapture; @PostConstruct public void init() { Properties props = new Properties();
props.put("bootstrap.servers", "localhost:9092"); props.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
props.put("value.serializer",
"org.apache.kafka.common.serialization.ByteArraySerializer"); producer = new
KafkaProducer<>(props); videoCapture = new VideoCapture(0);
// Webcam, or replace with video path } public void startVideoStream() { new Thread(() -> { Mat frame = new Mat(); while (videoCapture.isOpened()) { if (videoCapture.read(frame))
{ byte[] frameData = new
byte[(int) (frame.total() * frame.channels())]; frame.get(0, 0,
frameData); producer.send(new
ProducerRecord<>("raw-video-frames", frameData)); try { Thread.sleep(55); }
catch (InterruptedException e) { e.printStackTrace(); } } } }).start(); } public void stopVideoStream() { videoCapture.release(); } } |
VideoProcessorService
Consumes raw frames from Kafka, processes them (e.g.,
converts them to grayscale), and publishes them to processed-video-frames.
java
import
org.apache.kafka.clients.consumer.ConsumerRecord; import
org.apache.kafka.clients.consumer.KafkaConsumer; import
org.apache.kafka.clients.consumer.ConsumerConfig; import
org.apache.kafka.clients.producer.KafkaProducer; import
org.apache.kafka.clients.producer.ProducerRecord; import
org.opencv.core.CvType; import
org.opencv.core.Mat; import
org.opencv.core.Size; import
org.opencv.imgproc.Imgproc; import
org.springframework.stereotype.Service; import
java.util.Collections; import
java.util.Properties; @Service public class
VideoProcessorService { public void startProcessing() { Properties consumerProps = new
Properties();
consumerProps.put(ConsumerConfig.BOOTSTRAP_SERVERS_CONFIG,
"localhost:9092");
consumerProps.put(ConsumerConfig.GROUP_ID_CONFIG,
"video-processor");
consumerProps.put(ConsumerConfig.KEY_DESERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.StringDeserializer");
consumerProps.put(ConsumerConfig.VALUE_DESERIALIZER_CLASS_CONFIG,
"org.apache.kafka.common.serialization.ByteArrayDeserializer"); KafkaConsumer<String, byte[]>
consumer = new KafkaConsumer<>(consumerProps);
consumer.subscribe(Collections.singletonList("raw-video-frames")); Properties producerProps = new
Properties();
producerProps.put("bootstrap.servers",
"localhost:9092");
producerProps.put("key.serializer",
"org.apache.kafka.common.serialization.StringSerializer");
producerProps.put("value.serializer",
"org.apache.kafka.common.serialization.ByteArraySerializer"); KafkaProducer<String, byte[]>
producer = new KafkaProducer<>(producerProps); while (true) { for (ConsumerRecord<String,
byte[]> rec : consumer.poll(100)) { Mat frame = new Mat(new
Size(640, 480), CvType.CV_8UC3); frame.put(0, 0, rec.value()); // Apply grayscale conversion Mat grayFrame = new Mat(); Imgproc.cvtColor(frame,
grayFrame, Imgproc.COLOR_BGR2GRAY); byte[] processedFrameData =
new byte[(int) (grayFrame.total() * grayFrame.channels())]; grayFrame.get(0, 0,
processedFrameData); producer.send(new
ProducerRecord<>("processed-video-frames",
processedFrameData)); } } } } |
VideoController
The REST controller allows you to start and stop the video
stream through HTTP requests.
java
import
org.springframework.beans.factory.annotation.Autowired; import
org.springframework.web.bind.annotation.*; @RestController @RequestMapping("/api/video") public class
VideoController { @Autowired private VideoProducerService
producerService; @Autowired private VideoProcessorService
processorService; @PostMapping("/start") public String startVideoStream() { producerService.startVideoStream(); processorService.startProcessing(); return "Video stream
started!"; } @PostMapping("/stop") public String stopVideoStream() { producerService.stopVideoStream(); return "Video stream
stopped!"; } } |
Step 5: Run the Spring Boot Application
Start your Spring Boot application, which will expose the
REST API at http://localhost:8080/api/video.
Ø Start
Stream: Send a POST request to http://localhost:8080/api/video/start to
begin streaming and processing.
Ø Stop
Stream: Send a POST request to http://localhost:8080/api/video/stop to stop
streaming.
Step 6: Video Display or Storage Consumer
Finally, create a consumer application to fetch and display
processed frames from processed-video-frames. You could integrate this with
your frontend for real-time video display or save frames to storage.
Additional Considerations
Ø Concurrency:
Run multiple instances of Kafka consumers for parallel processing.
Ø Error
Handling: Add logging and error handling for production readiness.
Ø Data
Format: For high performance, consider using Avro or Protobuf for video
frame serialization.
This setup provides a REST API to control a video stream processing pipeline, making it suitable for real-time video applications with Kafka and Spring Boot in Java.
Build a Video Stream Microservice with Kafka & REST API in Java |
For More Related information, visit
Ø
Kafka
general questions and answers
For Other information, visit
Ø
Microservices:
Custom Filters for Debouncing, Throttling, Rate Limits & Backoff
Ø
How
to get the neighbor of binary tree
Ø
To
securely obtain employee information utilizing TLS 1.3 or TLS 1.2
Ø
Git Command
0 Comments