Here's a hierarchical structure that includes a broader
range of Google Cloud services, categorized by their type and primary use
cases:
1.
Cloud Storage and Databases
1.
Based on
Structure 1.1.
Structured
Databases 1.1.1.
Relational
Databases (SQL) 1.1.1.1.
Online transaction processing (OLTP) 1.1.1.1.1.
Cloud SQL 1.1.1.1.1.1.
MySQL 1.1.1.1.1.2.
PostgreSQL 1.1.1.1.1.3.
Oracle, SQL Server 1.1.1.1.2.
Cloud Spanner 1.1.1.1.2.1.
Horizontally Scalable Relational
Database 1.1.1.1.2.2.
Global Consistency 1.1.1.2.
Online analytical processing (OLAP) 1.1.1.2.1.
Data
Warehousing and Analytics 1.1.1.2.1.1.
Cloud BigQuery 1.1.1.2.1.1.1.
Fully Managed Data Warehouse 1.1.1.2.1.1.2.
Supports SQL Queries 1.1.1.2.1.1.3.
Designed for Large-scale Data
Analysis 1.1.1.2.2.
Integration and
Advanced Use-Cases 1.1.1.2.2.1.
Integration
with Analytics Tools 1.1.1.2.2.1.1.
BigQuery for Analyzing Data from
Databases 1.1.1.2.2.1.2.
Integration with AI/ML Services 1.1.1.2.2.2.
Real-time Data
Handling 1.1.1.2.2.2.1.
Firestore for Real-time Applications 1.1.1.2.2.2.2.
Firebase Realtime Database for
Syncing Across Devices 1.2.
Semi-Structured
Databases 1.2.1.
.
Document-Oriented Databases 1.2.1.1.
Cloud Firestore 1.2.1.1.1.
Real-time Database 1.2.1.1.2.
Supports complex queries and
indexing 1.2.1.1.3.
Hierarchical data structure with
collections and documents 1.2.1.2.
Cloud Datastore 1.2.1.2.1.
Scalable NoSQL database 1.2.1.2.2.
ACID transactions 1.2.1.2.3.
Built for automatic scaling and high
availability 1.2.1.3.
Firebase
Realtime Database 1.2.1.3.1.
JSON Tree Structure 1.2.1.3.2.
Real-time syncing across clients 1.2.1.3.3.
Simple and optimized for mobile and
web applications 1.2.2.
Key-Value Stores 1.2.2.1.
Firebase
Realtime Database (Can be used as a key-value store) 1.2.2.1.1.
Scalable key-value database 1.2.2.1.2.
Optimized for real-time updates 1.2.3.
Wide-Column
(Column-Family) Stores 1.2.3.1.
Cloud Bigtable 1.2.3.1.1.
Massively scalable 1.2.3.1.2.
Ideal for time-series, IoT data, and
analytical workloads 1.2.3.1.3.
Supports wide-column data structure
with flexible schema 1.2.4.
Graph Databases 1.2.4.1.
Graph Databases
(General category, not specific to Google) 1.2.4.1.1.
Optimized for managing relationships
between entities 1.2.4.1.2.
Ideal for social networks, fraud
detection, and recommendation engines 1.2.4.1.3.
Neo4j (Example, not part of Google
Cloud) 1.2.5.
Some other
Databases (General category, not specific to Google) 1.2.5.1.
Flexible schema, optimized for
specific use cases. 1.2.5.2.
Scalable and handles large volumes
of unstructured data. 1.2.5.3.
Categories: 1.2.5.3.1.
Document-Oriented: JSON-like
documents, e.g., MongoDB. 1.2.5.3.2.
Key-Value Stores: Simple key-value
pairs, e.g., Redis. 1.2.5.3.3.
Column-Family Stores: Tables with
rows and dynamic columns, e.g., Cassandra. 1.2.5.3.4.
Graph Databases: Nodes and edges
representing relationships, e.g., Neo4j. 1.3.
Unstructured
Databases 1.3.1.
Object Storage: Amazon S3, Google
Cloud Storage 1.3.2.
Blob Storage: Azure Blob Storage 2.
Based on Data
Model 2.1.
Relational
(SQL) Databases 2.1.1.
Online
transaction processing (OLTP) 2.1.1.1.
Cloud SQL 2.1.1.1.1.
MySQL 2.1.1.1.2.
PostgreSQL 2.1.1.1.3.
Oracle, SQL Server 2.1.1.2.
Cloud Spanner 2.1.1.2.1.
Horizontally Scalable Relational
Database 2.1.1.2.2.
Global Consistency 2.1.2.
Online
analytical processing (OLAP) 2.1.2.1.
Data
Warehousing and Analytics 2.1.2.1.1.
Cloud BigQuery 2.1.2.1.1.1.
Fully Managed Data Warehouse 2.1.2.1.1.2.
Supports SQL Queries 2.1.2.1.1.3.
Designed for Large-scale Data
Analysis 2.1.2.2.
Integration and
Advanced Use-Cases 2.1.2.2.1.
Integration
with Analytics Tools 2.1.2.2.1.1.
BigQuery for Analyzing Data from
Databases 2.1.2.2.1.2.
Integration with AI/ML Services 2.1.2.2.2.
Real-time Data
Handling 2.1.2.2.2.1.
Firestore for Real-time Applications 2.1.2.2.2.2.
Firebase Realtime Database for
Syncing Across Devices 2.2.
Non-Relational
(NoSQL) Databases 2.2.1.
.
Document-Oriented Databases 2.2.1.1.
Cloud Firestore 2.2.1.1.1.
Real-time Database 2.2.1.1.2.
Supports complex queries and
indexing 2.2.1.1.3.
Hierarchical data structure with
collections and documents 2.2.1.2.
Cloud Datastore 2.2.1.2.1.
Scalable NoSQL database 2.2.1.2.2.
ACID transactions 2.2.1.2.3.
Built for automatic scaling and high
availability 2.2.1.3.
Firebase
Realtime Database 2.2.1.3.1.
JSON Tree Structure 2.2.1.3.2.
Real-time syncing across clients 2.2.1.3.3.
Simple and optimized for mobile and
web applications 2.2.2.
Key-Value Stores 2.2.2.1.
Firebase
Realtime Database (Can be used as a key-value store) 2.2.2.1.1.
Scalable key-value database 2.2.2.1.2.
Optimized for real-time updates 2.2.3.
Wide-Column
(Column-Family) Stores 2.2.3.1.
Cloud Bigtable 2.2.3.1.1.
Massively scalable 2.2.3.1.2.
Ideal for time-series, IoT data, and
analytical workloads 2.2.3.1.3.
Supports wide-column data structure
with flexible schema 2.2.4.
Graph Databases 2.2.4.1.
Graph Databases
(General category, not specific to Google) 2.2.4.1.1.
Optimized for managing relationships
between entities 2.2.4.1.2.
Ideal for social networks, fraud
detection, and recommendation engines 2.2.4.1.3.
Neo4j (Example, not part of Google
Cloud) 2.2.5.
Some other
Databases (General category, not specific to Google) 2.2.5.1.
Flexible schema, optimized for
specific use cases. 2.2.5.2.
Scalable and handles large volumes
of unstructured data. 2.2.5.3.
Categories: 2.2.5.3.1.
Document-Oriented: JSON-like
documents, e.g., MongoDB. 2.2.5.3.2.
Key-Value Stores: Simple key-value
pairs, e.g., Redis. 2.2.5.3.3.
Column-Family Stores: Tables with
rows and dynamic columns, e.g., Cassandra. 2.2.5.3.4.
Graph Databases: Nodes and edges
representing relationships, e.g., Neo4j. 3.
Based on
Deployment Model 3.1.
Public Cloud
Databases 3.1.1.
Managed by third-party cloud
providers. 3.1.2.
Examples: Amazon RDS, Google Cloud
SQL, Azure SQL Database. 3.2.
Private Cloud
Databases 3.2.1.
Hosted on private infrastructure. 3.2.2.
Provides more control over data and
compliance. 3.3.
Hybrid Cloud
Databases 3.3.1.
Combines public and private cloud
features. 3.3.2.
Balances scalability with control
and compliance. 4.
Based on
Storage Type 4.1.
Block Storage 4.1.1.
High performance, used for databases
like SQL 4.1.2.
Examples: AWS EBS, Google
Persistent Disk 4.2.
File Storage 4.2.1.
Shared storage, suitable for
applications needing file systems 4.2.2.
Examples: AWS EFS, Google
Filestore. 4.3.
Object Storage 4.3.1.
Standard
Storage / Hot Storage (Primary databases, real-time
analytics) 4.3.1.1.
Fast access, low latency 4.3.1.2.
It can be stored for at least 1-7 days 4.3.1.3.
Examples: AWS Aurora, Google
BigQuery 4.3.2.
Nearline
Storage/Warm Storage (Near real-time data
processing, less frequent queries) 4.3.2.1.
Moderately fast, lower cost than hot
storage 4.3.2.2.
It can be stored for at least
30 days 4.3.2.3.
Examples: AWS S3 Standard-IA, Google
Cloud Nearline 4.3.3.
Coldline
Storage (Backup, infrequent access) 4.3.3.1.
Slow retrieval times, lowest cost 4.3.3.2.
It can be stored for at least 90 days 4.3.3.3.
Examples: AWS Glacier, Google
Cloud Coldline 4.3.4.
Archive Storage
(archival) 4.3.4.1.
Scalable storage for unstructured
data 4.3.4.2.
It can be stored for at least 365 days. 4.3.4.3.
Examples: AWS S3, Google Cloud
Storage
|
2.
Data Integration and Processing
2.1. Cloud Pub/Sub (Messaging Service) 2.1.1. Real-time Messaging 2.1.2. Event-driven Applications 2.2. Cloud Dataflow (Stream and Batch Data Processing) 2.2.1. Unified Stream and Batch Processing 2.2.2. Apache Beam Runner 2.3. Cloud Dataproc (Managed Spark and Hadoop) 2.3.1. Managed Hadoop/Spark Ecosystem 2.3.2. Scalable and Cost-effective Data
Processing 2.4. Cloud Dataprep (Data Preparation) 2.4.1. Data Cleaning and Preparation 2.4.2. Visual Data Exploration 2.5. Cloud Composer (Workflow
Orchestration) 2.5.1. Managed Apache Airflow 2.5.2. Workflow Automation |
This hierarchy helps to categorize the various Google Cloud
services by their primary function, aiding in understanding how they interact
and can be used together in different cloud architectures.
Cloud database and datastorage |
0 Comments