Header Ads Widget

Responsive Advertisement

The method for calculating the area of a rectangle in Java

 

The area of a rectangle can be calculated using various approaches depending on the mathematical or computational perspective. Here are some different methods:


1. Basic Formula (Multiplication):

$$Area=length×width$$

Example:

For a rectangle with length l=10 and width w=5:

Area=10×5=50 square units.

Java

public class RectangleArea {

    public static void main(String[] args) {

        int length = 10;

        int breadth = 5;

        int area = length * breadth;

        System.out.println("Area of rectangle: " + area);

    }

}

 

Basic formula
Basic formula





2. Using Integration (Calculus):

The area can be found by integrating over the width or length of the rectangle.

Example:

A rectangle with one side along the x-axis from x=0 to x=l and the other side at height h:

$$Area=\int_{0}^{l}hdx$$

Since h is constant:

$$Area=\int_{0}^{l}hdx=h[x]_{0}^{l}=h⋅l$$

 

Using Integration
Using Integration


Application:

This approach is useful for approximating areas under a curve that forms a rectangle-like shape.

To calculate the area of a rectangle using integration, we integrate over the length and width of the rectangle. Here’s the process:

 

Setup:

A rectangle has:

  • Length (l) = 10
  • Width (w) = 5

The rectangle can be thought of as spanning the following region in the x-y plane:

\(0≤x≤l\) and \(0≤y≤w\)

The formula for area is:

$$Area=\int\int_{R}1dA$$

Where R is the region of the rectangle, and dA=dx dy represents an infinitesimal area element.

 

Integration over x and y:

$$Area=\int_{x=0}^{l}\int_{y=0}^{w}1dydx$$

  1. First, integrate with respect to y (holding x constant):

$$\int_{y=0}^{w}1dy=[y]_{0}^{w}=w−0=w$$

  1. Now, integrate with respect to x:

$$\int_{x=0}^{l}wdx=w\int_{x=0}^{l}1dx=w\cdot [x]_{0}^{l}=w\cdot (l−0)=w\cdot l$$ 

Result:

For l=10 and w=5:

Area=510=50

 

Using Double Integration
Using Double Integration

Geometric Interpretation:

The integration effectively sums up the infinitesimal strips of width dx (or height dy) across the rectangle, reconstructing the area step by step.

 java

public class RectangleAreaIntegration {

    public static void main(String[] args) {

        double length = 10;

        double breadth = 5;

        double area = integrate(0, length, breadth);

        System.out.println("Area of rectangle using integration: " + area);

    }

 

    // Numerical integration using the trapezoidal rule

    public static double integrate(double lowerLimit, double upperLimit, double constant) {

        int n = 1000; // Number of intervals

        double delta = (upperLimit - lowerLimit) / n;

        double sum = 0;

 

        for (int i = 0; i < n; i++) {

            double x1 = lowerLimit + i * delta;

            double x2 = x1 + delta;

            sum += (constant * (x2 - x1)); // Breadth remains constant

        }

 

        return sum;

    }

}

 

 


3. Using Coordinate Geometry (Determinants):

For a rectangle defined by its vertices \((x_{1}, y_{1}), (x_{2}, y_{2}), (x_{3}, y_{3})\), and \((x_{4}, y_{4})\), the area can be calculated by dividing it into triangles or using the Shoelace formula:

$$Area= \frac{1}{2}∣x_{1}y_{2}+x_{2}y_{3}+x_{3}y_{4}+x_{4}y_{1} −(y_{1}x_{2}+y_{2}x_{3}+y_{3}x_{4}+y_{4}x_{1})∣$$​

Example:

Vertices are (0,0), (4,0), (4,3), (0,3):

$$Area= \frac{1}{2}∣x_{1}y_{2}+x_{2}y_{3}+x_{3}y_{4}+x_{4}y_{1} −(y_{1}x_{2}+y_{2}x_{3}+y_{3}x_{4}+y_{4}x_{1})∣$$

$$=\frac{1}{2}∣0\cdot 0+4\cdot3+4\cdot3+0\cdot0-(0\cdot4+0\cdot4+3\cdot0+3\cdot0)=\frac{1}{2}×24=12$$

 

Using Coordinate Geometry
Using Coordinate Geometry


java

public class RectangleAreaCoordinates {

    public static void main(String[] args) {

        int x1 = 0, y1 = 0;

        int x2 = 4, y2 = 3;

 

        int length = Math.abs(x2 - x1);

        int breadth = Math.abs(y2 - y1);

        int area = length * breadth;

 

        System.out.println("Area of rectangle using coordinates: " + area);

    }

}

 


4-a. Using Diagonals and Trigonometry:

If you know the length of the diagonal d and the angle θ between the diagonal and a side:

$$Area=d^{2}\cdot sin(θ)\cdot cos(θ)$$

Using the double-angle identity (sin(2θ)=2sin(θ)cos(θ):

$$Area=\frac{1}{2}d^{2}sin(2θ)$$

Example:

If d=5 and \(θ=45^\circ\), then:

\(Area= \frac{1}{2}\cdot 5^{2}\cdot sin(90^\circ)= \frac{1}{2}\cdot 25\cdot 1=12.5\)

 

Using Diagonals and Trigonometry
Using Diagonals and Trigonometry


  

  • d is the diagonal length of the rectangle.
  • \(\theta\) is the angle between the diagonal and one side of the rectangle.

This formula is derived from trigonometric relationships. Here's how you can implement it in Java:


java

public class RectangleAreaTrigonometry {

 

    public static void main(String[] args) {

        // Input values

        double diagonal = 10; // Length of the diagonal (d)

        double theta = 45;    // Angle in degrees (θ) between diagonal and one side

 

        // Calculate the area using the formula: 1/2 * d^2 * sin(2 * theta)

        double area = calculateArea(diagonal, theta);

 

        System.out.println("Area of the rectangle using the formula 1/2 * d^2 * sin(2 * theta): " + area);

    }

    public static double calculateArea(double diagonal, double thetaDegrees) {

        // Convert angle from degrees to radians for Math.sin function

        double thetaRadians = Math.toRadians(thetaDegrees);

 

        // Use the formula: 1/2 * d^2 * sin(2 * theta)

        return 0.5 * Math.pow(diagonal, 2) * Math.sin(2 * thetaRadians);

    }

}

 

 


Explanation

  1. Input:

Ø  diagonal: The length of the diagonal of the rectangle.

Ø  theta: The angle in degrees between the diagonal and one side.

  1. Conversion:

Ø  Java's Math.sin() function works with radians, so the angle is converted from degrees to radians using Math.toRadians().

  1. Formula:

Ø  The area is computed using \(\frac{1}{2}d^2 \sin(2\theta)\).

  1. Output:

Ø  The calculated area is displayed.


Example Output

Input:

Ø  d=10

Ø  \(\theta = 45^\circ\)

Calculation:

\(\text{Area} = \frac{1}{2} \times 10^2 \times \sin(90^\circ)\)

 Area=0.5×100×1=50.0

Output:

Area of the rectangle using the formula 1/2 * d^2 * sin(2 * theta): 50.0


4-b. Using Diagonal and Trigonometry

If the diagonal (d) and one side (a) of the rectangle are known, the other side (b) can be calculated using Pythagoras' theorem:

$$b = \sqrt{d^2 - a^2}$$​

Then the area is:

Area=a×b

Using Diagonal
Using Diagonal


java

public class RectangleAreaDiagonal {

    public static void main(String[] args) {

        double diagonal = 13; // Hypotenuse

        double length = 12;   // One side

        double breadth = Math.sqrt(diagonal * diagonal - length * length);

        double area = length * breadth;

        System.out.println("Area of rectangle using diagonal: " + area);

    }

}

 

 


 

5. Using Limits (Summation Approach):

By approximating the rectangle as a set of n narrow strips of width Δx, where \(Δx=\frac{l}{n}\)​:

$$Area= \lim_{n \to ∞}\sum_{i=1}^{n}w\cdot Δx$$


Using Limits
Using Limits


Example:

For l=6, w=4, and dividing it into n=3 strips:

\(Δx=\frac{6}{3}=2\)​

 

Area for each strip = 4×2=8. Total area = 8+8+8=24. Refine further for n→∞ to reach the exact value 24.

Java

public class RectangleAreaLimit {

    public static void main(String[] args) {

        double length = 10; // Length of the rectangle

        double breadth = 5; // Breadth of the rectangle

        int n = 1000000;    // Number of strips (higher for better approximation)

 

        // Calculate delta x (width of each strip)

        double deltaX = length / n;

        double area = 0;

 

        // Summing the area of each strip

        for (int i = 0; i < n; i++) {

            area += breadth * deltaX;

        }

 

        System.out.println("Area of rectangle using limit approach: " + area);

    }

}

 

 

  1. Divide Rectangle into Strips:

Ø  The rectangle is divided into n thin strips along its length. Each strip has a width of $$\Delta x = \frac{\text{Length}}{n}$$​.

  1. Sum of Strip Areas:

Ø  Each strip's area is Breadth×Δx, which is added together for all strips.

  1. Limit Approximation:

Ø  By increasing n (e.g., setting n=1,000,000), the approximation becomes more accurate, approaching the true area.

  1. Result:

Ø  The sum of all strip areas gives the total area of the rectangle.


Example Output

For a rectangle with length = 10 and breadth = 5:

Area of rectangle using limit approach: 50.0

Some info:


6. Using Matrix Representation (Linear Algebra):

Given two vectors representing adjacent sides of the rectangle in a 2D plane:

$$\vec{u} = \langle u_x, u_y \rangle,\,\vec{v} =\langle v_x, v_y\rangle$$

The area can be calculated using the determinant of the matrix formed by these vectors:

$$\text{Area} = |u_x v_y - u_y v_x|$$

Example:

If \(\vec{u} = \langle 4, 0 \rangle, \vec{v} = \langle 0, 3 \rangle \):

$$\text{Area} = |4 \cdot 3 - 0 \cdot 0| = 12$$


In linear algebra, the area of a rectangle can be calculated using a matrix representation by treating its vertices as vectors in a coordinate system. Here's the approach:

Mathematical Concept

Given a rectangle's four vertices:

$$A(x_1, y_1), B(x_2, y_2), C(x_3, y_3), D(x_4, y_4)$$

The area of the rectangle can be computed as:

  1. Divide the rectangle into two triangles: \(\triangle ABC\) and \(\triangle CDA\).
  2. Use the determinant of a 2×2 matrix to find the area of each triangle:

$$\text{Area of } \triangle = \frac{1}{2} \left| x_1(y_2 - y_3) + x_2(y_3 - y_1) + x_3(y_1 - y_2) \right|$$

  1. Add the areas of both triangles to get the total area of the rectangle.

Using Matrix Representation
Using Matrix Representation



java

public class RectangleAreaMatrix {

 

    public static void main(String[] args) {

        // Coordinates of the rectangle's vertices (in clockwise or counterclockwise order)

        double[][] rectangle = {

            {0, 0}, // A(x1, y1)

            {4, 0}, // B(x2, y2)

            {4, 3}, // C(x3, y3)

            {0, 3}  // D(x4, y4)

        };

 

        // Calculate the area using matrix representation

        double area = calculateRectangleArea(rectangle);

 

        System.out.println("Area of the rectangle using matrix representation: " + area);

    }

 

    public static double calculateRectangleArea(double[][] vertices) {

        if (vertices.length != 4 || vertices[0].length != 2) {

            throw new IllegalArgumentException("Input must contain exactly 4 vertices with 2 coordinates each.");

        }

 

        // Split rectangle into two triangles: ABC and CDA

        double areaABC = calculateTriangleArea(vertices[0], vertices[1], vertices[2]); // A, B, C

        double areaCDA = calculateTriangleArea(vertices[2], vertices[3], vertices[0]); // C, D, A

 

        // Total area of the rectangle

        return areaABC + areaCDA;

    }

 

    public static double calculateTriangleArea(double[] p1, double[] p2, double[] p3) {

        // Using the determinant formula for the area of a triangle

        return Math.abs(p1[0] * (p2[1] - p3[1]) +

                        p2[0] * (p3[1] - p1[1]) +

                        p3[0] * (p1[1] - p2[1])) / 2.0;

    }

}

 


Explanation of the Code

  1. Vertices Input:

Ø  The rectangle is represented as a 4×2 matrix, where each row corresponds to a vertex's (x,y) coordinates.

  1. Splitting into Triangles:

Ø  The rectangle is divided into two triangles: ABC and CDA.

  1. Area of Each Triangle:

Ø  The determinant-based formula is used to calculate the area of each triangle.

  1. Adding Areas:

Ø  The sum of the areas of the two triangles gives the total area of the rectangle.


Example Output

For the rectangle with vertices:

A(0,0),B(4,0),C(4,3),D(0,3)

The output will be:

Area of the rectangle using matrix representation: 12.0


Summary of Methods:

  • Basic multiplication is the simplest and most commonly used.
  • Integration and limits offer a calculus-based perspective.
  • Coordinate geometry and vectors help in advanced applications like graphics or engineering.

Let me know if you'd like more details or examples!

 

For More sort information, visit:

Ø  Selection Sort with iteration wise per step

Ø  Insertion Sort

Ø  Bubble Sort with each iteration how it is work

Ø  Merge sort of Each step how it is working

Ø  Quick Sort per iteration what happen

Ø  Sorting of country

Ø  Sorting Of a list multiple attribute wise two technique

Ø  Seat Arrangement in Sorting Order Like 1A-1E, 3C-3G etc

Ø  How to sort 10 billion numbers

Ø  Merge Sort simple under standing

 

For Math information, visit:

Ø  Calculating the area of a triangle




Post a Comment

0 Comments